
Installation JumpServer Enterprise Edition

Installation JumpServer Community Edition

Operation and Maintenance with command line jmsctl

JumpServer port discription

Installing SSL Certificates and Configuring HTTPS

HAProxy configuration for JumpServer HA-cluster

JumpServer HA-cluster configuration

Installation

•

•

•

•

•

•

•

To begin, you need to request the latest distribution file from us via email at info@afi-

d.com or on Telegram: @mapceaheh.

OS: Linux/AMD64 (arm64) x86_64(aarch64) kernel version 4.0 or higher
(preferably Redhat, Debian, Ubuntu families)
CPU: 4 cores
RAM: 8 GB
HDD: 60 GB

Place the downloaded file in the directory /opt

Execute the following commands (file names may vary with new versions):

Next, you can edit the configuration file to change installation parameters, for example, to
use an external MySQL database or change the installation folder.

Start the installation:

During installation, you will need to confirm the data entered in the configuration file or
provide other data if you did not fill in the configuration file in advance.

Start the application:

Navigate to the product folder (the folder name may change with new versions) and start
application:

Installation JumpServer
Enterprise Edition

1.System Requirements:
•

•
•
•

2. Installation

$ cd /opt
$ tar -xf jumpserver-offline-installer-v3.10.3-amd64.tar.gz
$ cd jumpserver-offline-installer-v3.10.3-amd64

nano /opt/jumpserver-offline-installer-v3.10.3-amd64/config-example.txt

cd jumpserver-offline-installer-v3.10.3-amd64
./jmsctl.sh install

./jmsctl.sh start

3. Start application

mailto:info@afi-d.com
mailto:info@afi-d.com
mailto:info@afi-d.com
mailto:info@afi-d.com
https://t.me/mapceaheh
https://t.me/mapceaheh

After this, you can access the web interface at:

http://IP/ Login: admin
Password: ChangeMe

and begin configuring the system.

cd /opt/jumpserver-installer-v3.10.3
./jmsctl.sh start

http://jmsctl.sh
http://IP/
http://IP/

Attention: You will not be able to install a license to activate Enterprise (x-pack) features
in the Community Edition. If you plan to do PoC of Enterprise version, follow the installation
instructions for JumpServer Enterprise Edition.

System Requirements:

OS: Linux/AMD64 (arm64) x86_64(aarch64) kernel version 4.0 or higher
CPU: 4 cores
RAM: 8 GB
HDD: 60 GB

Installation of additional components on Debian\Ubuntu as an example:

In this case, JumpServer will be installed with default parameters, and MySQL and Redis
databases will be installed in containers on the same server.

Wait for the script execution to complete.

Download the latest installer from GitHub: https://github.com/jumpserver/installer/

releases/ Below are example commands for version 3.10.3:

Next, you can edit the configuration file to change installation parameters, for example, to
use an external MySQL database or change the installation folder for cluster installation
etc.

Installation JumpServer
Community Edition

1. Server preparation

•
•
•
•

apt-get update
apt-get install -y wget curl tar gettext iptables

2. JumpServer Installation

Quick Online JumpServer Installation:

$ curl -sSL https://github.com/jumpserver/jumpserver/releases/latest/download/quick_start.sh | bash

Standard Online Installation:

cd /opt/
wget https://github.com/jumpserver/installer/releases/download/v3.10.3/jumpserver-installer-v3.10.3.tar.gz
tar -xf jumpserver-installer-v3.10.3.tar.gz

nano /opt/jumpserver-installer-v3.10.3/config-example.txt

https://github.com/jumpserver/installer/releases/
https://github.com/jumpserver/installer/releases/

Start the installation:

During installation, you will need to confirm the data entered in the configuration file or
provide other data if you did not fill in the configuration file in advance.

After the installation is complete, navigate to the product folder (the folder name may
change with new versions) and start the application:

After that, you can access the web interface at:

http://IP/ Login: admin
Password: ChangeMe

and begin configuring the system.

cd ./jumpserver-installer-v3.10.3
./jmsctl.sh install

3. Starting the Application

$ cd /opt/jumpserver-installer-v3.10.3
./jmsctl.sh start

http://jmsctl.sh
http://IP/
http://IP/

JumpServer includes a built-in command-line tool for operation and maintenance by
default - jmsctl. To view the help documentation, run the command:

JumpServer Application Management:

Installation Commands:

install - Install the JumpServer service

Management Commands:

config - Configure the tool, run jmsctl config --help to view help
start - Start the JumpServer service
stop - Stop the JumpServer service
restart - Restart the JumpServer service
status - Check the status of the JumpServer service
down - Stop the JumpServer service
uninstall - Uninstall the JumpServer service

Additional Commands:

load_image - Load a Docker image
backup_db - Backup the JumpServer database
restore_db [file] - Restore data from a database backup file
raw - Execute a docker compose command
tail [service] - View service logs

Operation and
Maintenance with
command line jmsctl
Operation and Maintenance - jmsctl

jmsctl help

 ./jmsctl.sh [COMMAND] [ARGS...]

 ./jmsctl.sh --help

•

•
•
•
•
•
•
•

•
•
•
•
•

JumpServer requires the following network ports to be open for proper operation.
Administrators can open the appropriate ports in the network and on the host depending
on the deployment scheme of JumpServer components.

JumpServer port
discription
List of Network Ports

Port Purpose Description

22 SSH Installation, updates, and
management

80 Web HTTP Service Access to the JumpServer web
interface via HTTP

443 Web HTTPS Service Access to the JumpServer web
interface via HTTPS

3306 Database Service Used by MySQL

6379 Database Service Used by Redis

3389 Razor Service Port Connection to Windows assets via
RDP Client

2222 SSH Client Connection to JumpServer via
terminal tools (Xshell, PuTTY, etc.)

33061 Magnus MySQL Service Port Connection to MySQL via DB
Client

33062 Magnus MariaDB Service Port Connection to MariaDB via DB
Client

54320 Magnus PostgreSQL Port Connection to PostgreSQL via DB
Client

63790 Magnus Redis Port Connection to Redis via DB Client

30000-30100 Magnus Oracle Ports Connection to Oracle via DB
Client, port range can be
configured

Nginx supports secure WebSockets (wss://), managing connections and securing the
channel with an SSL certificate. To enable the copy-paste functionality in the RDP protocol,
a trusted SSL certificate must be deployed. Copy-paste in RDP assets is only possible when
accessed via the HTTPS protocol.

Prepare an SSL certificate (note that the certificate must be in PEM format). Certificates
should be placed in the directory /opt/jumpserver/config/nginx/cert

Stop the JumpServer service:

Open the JumpServer configuration file:

Find and update the Nginx configuration parameters:

Save the configuration changes and start JumpServer:

If you need to further edit the Nginx configuration file:

Installing SSL Certificates
and Configuring HTTPS
What is the Purpose of JumpServer Reverse Proxy?

Installing SSL Certificates and Configuring HTTPS for the
Web Interface

./jmsctl.sh stop

vi /opt/jumpserver/config/config.txt

Nginx Configuration

HTTP_PORT=80

SSH_PORT=2222

RDP_PORT=3389

HTTPS Configuration

HTTPS_PORT=443 # External port for HTTPS, default is 443

SERVER_NAME=www.domain.com # Your domain for HTTPS

SSL_CERTIFICATE=xxx.pem # Your certificate name in /opt/jumpserver/config/nginx/cert

SSL_CERTIFICATE_KEY=xxx.key # Your key file name in /opt/jumpserver/config/nginx/cert

./jmsctl.sh start

vi /opt/jumpserver/config/nginx/lb_http_server.conf

Hint:

This configuration is suitable when there is a shared external proxy server at the top level.
It is an example of multi-level reverse proxying on Nginx. Each proxy section must be
configured to support long WebSocket connections.

Editing the Configuration File:

Example Configuration without SSL:

Recommendation:

For more secure access, it is recommended to configure SSL and use the HTTPS protocol,
following the guidelines from Mozilla SSL Configuration Generator.

Example Configuration with SSL:

Redirecting HTTP to HTTPS:

Configuring HTTPS:

Multi-Level Reverse Proxy on Nginx

vi /etc/nginx/conf.d/jumpserver.conf

server {

 listen 80;

 server_name demo.jumpserver.org; # Replace with your domain

 client_max_body_size 4096m; # Limit for maximum file upload size

 location / {

 # Specify the IP address of the JumpServer Nginx server

 proxy_pass http://192.168.244.144;

 proxy_http_version 1.1;

 proxy_buffering off;

 proxy_request_buffering off;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 }

}

server {

 listen 80;

 server_name demo.jumpserver.org; # Replace with your domain

 return 301 https://$server_name$request_uri; # Redirect all HTTP requests to HTTPS

}

https://ssl-config.mozilla.org/

Hint:

Correctly configure long WebSocket connection support.
Consider session management issues.

server {

 listen 443 ssl http2;

 server_name demo.jumpserver.org; # Replace with your domain

 ssl_certificate sslkey/1_jumpserver.org_bundle.crt; # Path to your SSL certificate

 ssl_certificate_key sslkey/2_jumpserver.org_bundle.key; # Path to your certificate key

 ssl_session_timeout 1d;

 ssl_session_cache shared:MozSSL:10m;

 ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-

AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-

RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;

 ssl_prefer_server_ciphers off;

 ssl_protocols TLSv1.1 TLSv1.2;

 add_header Strict-Transport-Security "max-age=63072000" always;

 client_max_body_size 4096m; # Limit for maximum file upload size

 location / {

 # Specify the IP address of the JumpServer Nginx server

 proxy_pass http://192.168.244.144;

 proxy_http_version 1.1;

 proxy_buffering off;

 proxy_request_buffering off;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 }

}

3. Other Load Balancers (SLB)

1.
2.

HAProxy (High Availability Proxy) — is an open-source software tool used for load
balancing and traffic proxying at the network protocol level, typically employed to
distribute traffic across multiple servers. It is one of the most popular solutions for
enhancing the availability and performance of web applications and services.

To install HAProxy on Ubuntu:

After installation, you need to edit the configuration file, which is the main aspect of setting
up HAProxy. The configuration file is typically located at /etc/haproxy/haproxy.cfg.

Example Configuration File from the Vendor's Documentation:

HAProxy configuration for
JumpServer HA-cluster

sudo apt install haproxy -y

global

 log 127.0.0.1 local2

 chroot /var/lib/haproxy

 pidfile /var/run/haproxy.pid

 maxconn 4000

 user haproxy

 group haproxy

 daemon

 stats socket /var/lib/haproxy/stats

defaults

 log global

 option dontlognull

 option redispatch

 retries 3

 timeout http-request 10s

 timeout queue 1m

 timeout connect 10s

 timeout client 1m

 timeout server 1m

 timeout http-keep-alive 10s

 timeout check 10s

 maxconn 3000

listen stats

 bind *:8080

 mode http

After modifying the configuration file, restart and enable HAProxy:

 stats enable

 stats uri /haproxy

 stats refresh 5s

 stats realm haproxy-status

 stats auth admin:password

listen jms-web

 bind *:80

 mode http

 option httpchk GET /api/health/

 stick-table type ip size 200k expire 30m

 stick on src

 balance leastconn

 server 192.168.100.21 192.168.100.21:80 weight 1 cookie web01 check inter 2s rise 2 fall 3

 server 192.168.100.22 192.168.100.22:80 weight 1 cookie web02 check inter 2s rise 2 fall 3

systemctl enable haproxy

systemctl start haproxy

JumpServer (including Community Edition) fully supports HA clustering without any
restrictions. In this article, I will show how it works.

An HA (High Availability) cluster for JumpServer is necessary to ensure high system
availability and minimize downtime. It enables:

Avoiding downtime: If one cluster node fails, another continues to handle user
requests.
Ensuring fault tolerance: Clustering allows the system to automatically switch
to available nodes in case of errors.
Improving performance: Load is distributed across multiple nodes, enhancing
system responsiveness under high user demand.
Increasing data storage reliability: Using shared resources like MySQL and
Redis with clustering support minimizes the risk of data loss.
Scalability: The cluster can be easily expanded by adding more nodes to handle
more users and tasks.

This architecture is particularly important for organizations where JumpServer is used as a
critical access and control system.

Nodes/JumpServer Nodes - Core cluster nodes with JumpServer installed. Each server
does not store "useful" data, making it possible to clone, copy, delete, or add nodes as
needed.

Database MySQL/PostgreSQL - The main DBMS for storing all JumpServer data,
including system settings, device parameters, user accounts, and passwords for target
systems. By default, it also stores session text logs such as SSH commands, SQL queries,
and keyboard input in RDP sessions.
By default, JumpServer creates and uses PostgreSQL within a container on the same server
where JumpServer is installed.

Redis Database - An auxiliary database for caching. It can be a shared database for the
entire cluster or separate databases for each cluster node.
By default, JumpServer creates and uses Redis within a container on the same server
where JumpServer is installed.

Video Recordings Storage - By default, it stores session recordings in the folder $folde
r/core/data/media, where $folder is specified in the main configuration file (default: VO
LUME_DIR=/data/jumpserver). The product's web interface allows setting up external
video storage: SFTP, S3, Ceph, MinIo, and others.

JumpServer HA-cluster
configuration

Why is an HA cluster needed for JumpServer

1.

2.

3.

4.

5.

Components of the JumpServer Cluster

Command Logs Storage - Logs are stored in the main database by default. The web
interface allows configuring log storage in Elasticsearch.

Load Balancer - Usually based on HAProxy, but other options can be used.

Typically, a JumpServer cluster consists of two or more cluster nodes that:

Are connected to a shared MySQL/PostgreSQL database (or cluster).
Are connected to a shared Redis database (or each has its own).
Share a common storage for video recordings:
- A common folder $folder/core/data/ (usually implemented via an NFS server).
OR
- External storage for session recordings (e.g., SFTP, S3, Ceph, MinIo).
Share a common storage for command logs:
- Based on a shared database (default).
OR
- Based on Elasticsearch.
Use a load balancer (optional).

Example of creating a JumpServer cluster
- With a shared MySQL database
- With a shared Redis database
- With a shared folder for storing video recordings $folder/core/data/ using an NFS server.

For this, we need:

Server with NFS, MySQL, Redis:
4 CPUs, 8 GB of RAM.

JumpServer Node1:
4 CPUs, 8 GB of RAM, 100 GB of free disk space.

JumpServer Node2:
4 CPUs, 8 GB of RAM, 100 GB of free disk space.

HAProxy Server (or another load balancer).

Server: Ubuntu 22.04, IP: 10.10.50.10

Commands may vary for different Linux versions, but generally, you need to create a
shared folder:

Cluster Architecture

•
•
•

•

•

Example of creating a JumpServer HA Cluster with two
nodes

1.
•

2.
•

3.
•

4.

1. Preparing the server with NFS, MySQL, and Redis

•

Installing and configuring NFS

sudo apt install nfs-kernel-server

sudo mkdir -p /data

Add the following line to the /etc/exports file:

Apply the settings and restart the NFS service:

Instructions depend on the OS version. To create a database and user, run the following
commands:

Don’t forget to configure the firewall to open the MySQL port (3306).

Instructions depend on the OS version. After installing Redis, run the following commands:

This will allow access to Redis with the password KXOeyNgDeTdpeu9q . Make sure to use a
unique password for your server. Open the port 6379 in the firewall.

Install the NFS client, mount the folder, and configure automatic mounting at startup:

sudo chown -R nobody:nogroup /data/

sudo chmod 777 /data/

sudo nano /etc/exports

/data 10.10.50.10/24(rw,sync,no_subtree_check)

sudo exportfs -a

sudo systemctl restart nfs-kernel-server

Installing and configuring MySQL

mysql -uroot

mysql> create database jumpserver default charset 'utf8';

mysql> set global validate_password_policy=LOW;

mysql> create user 'jumpserver'@'%' identified by 'KXOeyNgDeTdpeu9q';

mysql> grant all on jumpserver.* to 'jumpserver'@'%';

mysql> flush privileges;

mysql> exit;

Installing and configuring Redis

sed -i "s/bind 127.0.0.1/bind 0.0.0.0/g" /etc/redis.conf

sed -i "561i maxmemory-policy allkeys-lru" /etc/redis.conf

sed -i "481i requirepass KXOeyNgDeTdpeu9q" /etc/redis.conf

2. Installing JumpServer

Installing the first JumpServer node

Mounting the NFS Directory

sudo apt install nfs-common

mkdir -p /opt/jumpserver/core/data

Edit the config-example.txt file in the installer directory:

Run the installation:

After the installation is complete, you will receive the following values:

Install the NFS client and mount the folder just as on the first node.

When editing the JumpServer configuration file, fill in the values for SECRET_KEY and B
OOTSTRAP_TOKEN obtained after installing the first node:

mount -t nfs 10.10.50.10:/data /opt/jumpserver/core/data

echo "10.10.50.10:/data /opt/jumpserver/core/data nfs defaults 0 0" >> /etc/fstab

Configuring JumpServer

Modify the following parameters, leave others as default.

IMPORTANT: SECRET_KEY must match on all JumpServer nodes, or the data will not decrypt.

VOLUME_DIR=/opt/jumpserver

SECRET_KEY=

BOOTSTRAP_TOKEN=

LOG_LEVEL=ERROR

SESSION_EXPIRE_AT_BROWSER_CLOSE=True

MySQL

DB_HOST=10.10.50.10

DB_PORT=3306

DB_USER=jumpserver

DB_PASSWORD=KXOeyNgDeTdpeu9q

DB_NAME=jumpserver

Redis

REDIS_HOST=10.10.50.10

REDIS_PORT=6379

REDIS_PASSWORD=KXOeyNgDeTdpeu9q

KoKo Lion

SHARE_ROOM_TYPE=redis

REUSE_CONNECTION=False

./jmsctl.sh install

SECRET_KEY=kWQdmdCQKjaWlHYpPhkNQDkfaRulM6YnHctsHLlSPs8287o2kW

BOOTSTRAP_TOKEN=KXOeyNgDeTdpeu9q

Installing the Second JumpServer Node

And run the installation:

After completing the setup, you will have two JumpServer nodes sharing one MySQL/Redis
server and NFS storage. You can use any of the nodes to access target devices or
configure HAProxy to automatically redirect users to an active node.

VOLUME_DIR=/opt/jumpserver

SECRET_KEY=kWQdmdCQKjaWlHYpPhkNQDkfaRulM6YnHctsHLlSPs8287o2kW

BOOTSTRAP_TOKEN=KXOeyNgDeTdpeu9q

LOG_LEVEL=ERROR

SESSION_EXPIRE_AT_BROWSER_CLOSE=True

MySQL

DB_HOST=10.10.50.10

DB_PORT=3306

DB_USER=jumpserver

DB_PASSWORD=KXOeyNgDeTdpeu9q

DB_NAME=jumpserver

Redis

REDIS_HOST=10.10.50.10

REDIS_PORT=6379

REDIS_PASSWORD=KXOeyNgDeTdpeu9q

KoKo Lion

SHARE_ROOM_TYPE=redis

REUSE_CONNECTION=False

./jmsctl.sh install

Result

	Installation
	Installation JumpServer Enterprise Edition
	1.System Requirements:
	2. Installation
	3. Start application

	Installation JumpServer Community Edition
	1. Server preparation
	2. JumpServer Installation
	Quick Online JumpServer Installation:
	Standard Online Installation:
	3. Starting the Application

	Operation and Maintenance with command line jmsctl
	Operation and Maintenance - jmsctl

	JumpServer port discription
	List of Network Ports

	Installing SSL Certificates and Configuring HTTPS
	What is the Purpose of JumpServer Reverse Proxy?
	Installing SSL Certificates and Configuring HTTPS for the Web Interface
	Multi-Level Reverse Proxy on Nginx
	3. Other Load Balancers (SLB)

	HAProxy configuration for JumpServer HA-cluster
	JumpServer HA-cluster configuration
	Why is an HA cluster needed for JumpServer
	Components of the JumpServer Cluster
	Cluster Architecture
	Example of creating a JumpServer HA Cluster with two nodes
	1. Preparing the server with NFS, MySQL, and Redis
	Installing and configuring NFS
	Installing and configuring MySQL
	Installing and configuring Redis
	2. Installing JumpServer
	Installing the first JumpServer node
	Mounting the NFS Directory
	Configuring JumpServer
	Installing the Second JumpServer Node
	Result

