
Installation

Installation JumpServer Enterprise Edition

Installation JumpServer Community Edition

Operation and Maintenance with command line jmsctl

JumpServer port discription

Installing SSL Certificates and Configuring HTTPS

HAProxy configuration for JumpServer HA-cluster

JumpServer HA-cluster configuration

Getting Started Guide

Getting Started Guide for JumpServer PoC

Main configuration

Active Directory synchronization with AD groups

Command filter configuration for SSH and database queries

How to enable 2FA(TOTP) auth

Installing OpenSSH for account management for Windows

Syslog configuration

RemoteApp configuration for application publishing

How to configure access to asset web-interface, HTTP session

configuration

Setting up Panda for application publishing(alternative to RemoteApp)

Troubleshooting

How to check system status and container logs

RemoteApp Troubleshooting

JumpServer
documentation
(en)

•

◦

◦

◦

◦

◦

◦

◦

•

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

Additional features

Custome Applet structure for RemoteApp

•

◦

Installation

Installation

To begin, you need to request the latest distribution file from us via email at info@afi-

d.com or on Telegram: @mapceaheh.

OS: Linux/AMD64 (arm64) x86_64(aarch64) kernel version 4.0 or higher
(preferably Redhat, Debian, Ubuntu families)
CPU: 4 cores
RAM: 8 GB
HDD: 60 GB

Place the downloaded file in the directory /opt

Execute the following commands (file names may vary with new versions):

Next, you can edit the configuration file to change installation parameters, for example, to
use an external MySQL database or change the installation folder.

Start the installation:

During installation, you will need to confirm the data entered in the configuration file or
provide other data if you did not fill in the configuration file in advance.

Start the application:

Navigate to the product folder (the folder name may change with new versions) and start
application:

Installation JumpServer
Enterprise Edition

1.System Requirements:
•

•
•
•

2. Installation

$ cd /opt
$ tar -xf jumpserver-offline-installer-v3.10.3-amd64.tar.gz
$ cd jumpserver-offline-installer-v3.10.3-amd64

nano /opt/jumpserver-offline-installer-v3.10.3-amd64/config-example.txt

cd jumpserver-offline-installer-v3.10.3-amd64
./jmsctl.sh install

./jmsctl.sh start

3. Start application

mailto:info@afi-d.com
mailto:info@afi-d.com
mailto:info@afi-d.com
mailto:info@afi-d.com
https://t.me/mapceaheh
https://t.me/mapceaheh

After this, you can access the web interface at:

http://IP/ Login: admin
Password: ChangeMe

and begin configuring the system.

cd /opt/jumpserver-installer-v3.10.3
./jmsctl.sh start

http://jmsctl.sh
http://IP/
http://IP/

Installation

Attention: You will not be able to install a license to activate Enterprise (x-pack) features
in the Community Edition. If you plan to do PoC of Enterprise version, follow the installation
instructions for JumpServer Enterprise Edition.

System Requirements:

OS: Linux/AMD64 (arm64) x86_64(aarch64) kernel version 4.0 or higher
CPU: 4 cores
RAM: 8 GB
HDD: 60 GB

Installation of additional components on Debian\Ubuntu as an example:

In this case, JumpServer will be installed with default parameters, and MySQL and Redis
databases will be installed in containers on the same server.

Wait for the script execution to complete.

Download the latest installer from GitHub: https://github.com/jumpserver/installer/

releases/ Below are example commands for version 3.10.3:

Next, you can edit the configuration file to change installation parameters, for example, to
use an external MySQL database or change the installation folder for cluster installation
etc.

Installation JumpServer
Community Edition

1. Server preparation

•
•
•
•

apt-get update
apt-get install -y wget curl tar gettext iptables

2. JumpServer Installation

Quick Online JumpServer Installation:

$ curl -sSL https://github.com/jumpserver/jumpserver/releases/latest/download/quick_start.sh | bash

Standard Online Installation:

cd /opt/
wget https://github.com/jumpserver/installer/releases/download/v3.10.3/jumpserver-installer-v3.10.3.tar.gz
tar -xf jumpserver-installer-v3.10.3.tar.gz

https://github.com/jumpserver/installer/releases/
https://github.com/jumpserver/installer/releases/

Start the installation:

During installation, you will need to confirm the data entered in the configuration file or
provide other data if you did not fill in the configuration file in advance.

After the installation is complete, navigate to the product folder (the folder name may
change with new versions) and start the application:

After that, you can access the web interface at:

http://IP/ Login: admin
Password: ChangeMe

and begin configuring the system.

nano /opt/jumpserver-installer-v3.10.3/config-example.txt

cd ./jumpserver-installer-v3.10.3
./jmsctl.sh install

3. Starting the Application

$ cd /opt/jumpserver-installer-v3.10.3
./jmsctl.sh start

http://jmsctl.sh
http://IP/
http://IP/

Installation

JumpServer includes a built-in command-line tool for operation and maintenance by
default - jmsctl. To view the help documentation, run the command:

JumpServer Application Management:

Installation Commands:

install - Install the JumpServer service

Management Commands:

config - Configure the tool, run jmsctl config --help to view help
start - Start the JumpServer service
stop - Stop the JumpServer service
restart - Restart the JumpServer service
status - Check the status of the JumpServer service
down - Stop the JumpServer service
uninstall - Uninstall the JumpServer service

Additional Commands:

load_image - Load a Docker image
backup_db - Backup the JumpServer database
restore_db [file] - Restore data from a database backup file
raw - Execute a docker compose command
tail [service] - View service logs

Operation and
Maintenance with
command line jmsctl
Operation and Maintenance - jmsctl

jmsctl help

 ./jmsctl.sh [COMMAND] [ARGS...]

 ./jmsctl.sh --help

•

•
•
•
•
•
•
•

•
•
•
•
•

Installation

JumpServer requires the following network ports to be open for proper operation.
Administrators can open the appropriate ports in the network and on the host depending
on the deployment scheme of JumpServer components.

JumpServer port
discription
List of Network Ports

Port Purpose Description

22 SSH Installation, updates, and
management

80 Web HTTP Service Access to the JumpServer web
interface via HTTP

443 Web HTTPS Service Access to the JumpServer web
interface via HTTPS

3306 Database Service Used by MySQL

6379 Database Service Used by Redis

3389 Razor Service Port Connection to Windows assets via
RDP Client

2222 SSH Client Connection to JumpServer via
terminal tools (Xshell, PuTTY, etc.)

33061 Magnus MySQL Service Port Connection to MySQL via DB
Client

33062 Magnus MariaDB Service Port Connection to MariaDB via DB
Client

54320 Magnus PostgreSQL Port Connection to PostgreSQL via DB
Client

63790 Magnus Redis Port Connection to Redis via DB Client

30000-30100 Magnus Oracle Ports Connection to Oracle via DB
Client, port range can be
configured

Installation

Nginx supports secure WebSockets (wss://), managing connections and securing the
channel with an SSL certificate. To enable the copy-paste functionality in the RDP protocol,
a trusted SSL certificate must be deployed. Copy-paste in RDP assets is only possible when
accessed via the HTTPS protocol.

Prepare an SSL certificate (note that the certificate must be in PEM format). Certificates
should be placed in the directory /opt/jumpserver/config/nginx/cert

Stop the JumpServer service:

Open the JumpServer configuration file:

Find and update the Nginx configuration parameters:

Save the configuration changes and start JumpServer:

If you need to further edit the Nginx configuration file:

Installing SSL Certificates
and Configuring HTTPS
What is the Purpose of JumpServer Reverse Proxy?

Installing SSL Certificates and Configuring HTTPS for the
Web Interface

./jmsctl.sh stop

vi /opt/jumpserver/config/config.txt

Nginx Configuration

HTTP_PORT=80

SSH_PORT=2222

RDP_PORT=3389

HTTPS Configuration

HTTPS_PORT=443 # External port for HTTPS, default is 443

SERVER_NAME=www.domain.com # Your domain for HTTPS

SSL_CERTIFICATE=xxx.pem # Your certificate name in /opt/jumpserver/config/nginx/cert

SSL_CERTIFICATE_KEY=xxx.key # Your key file name in /opt/jumpserver/config/nginx/cert

./jmsctl.sh start

Hint:

This configuration is suitable when there is a shared external proxy server at the top level.
It is an example of multi-level reverse proxying on Nginx. Each proxy section must be
configured to support long WebSocket connections.

Editing the Configuration File:

Example Configuration without SSL:

Recommendation:

For more secure access, it is recommended to configure SSL and use the HTTPS protocol,
following the guidelines from Mozilla SSL Configuration Generator.

Example Configuration with SSL:

Redirecting HTTP to HTTPS:

vi /opt/jumpserver/config/nginx/lb_http_server.conf

Multi-Level Reverse Proxy on Nginx

vi /etc/nginx/conf.d/jumpserver.conf

server {

 listen 80;

 server_name demo.jumpserver.org; # Replace with your domain

 client_max_body_size 4096m; # Limit for maximum file upload size

 location / {

 # Specify the IP address of the JumpServer Nginx server

 proxy_pass http://192.168.244.144;

 proxy_http_version 1.1;

 proxy_buffering off;

 proxy_request_buffering off;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 }

}

server {

 listen 80;

 server_name demo.jumpserver.org; # Replace with your domain

 return 301 https://$server_name$request_uri; # Redirect all HTTP requests to HTTPS

}

https://ssl-config.mozilla.org/

Configuring HTTPS:

Hint:

Correctly configure long WebSocket connection support.
Consider session management issues.

server {

 listen 443 ssl http2;

 server_name demo.jumpserver.org; # Replace with your domain

 ssl_certificate sslkey/1_jumpserver.org_bundle.crt; # Path to your SSL certificate

 ssl_certificate_key sslkey/2_jumpserver.org_bundle.key; # Path to your certificate key

 ssl_session_timeout 1d;

 ssl_session_cache shared:MozSSL:10m;

 ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-

AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-

RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384;

 ssl_prefer_server_ciphers off;

 ssl_protocols TLSv1.1 TLSv1.2;

 add_header Strict-Transport-Security "max-age=63072000" always;

 client_max_body_size 4096m; # Limit for maximum file upload size

 location / {

 # Specify the IP address of the JumpServer Nginx server

 proxy_pass http://192.168.244.144;

 proxy_http_version 1.1;

 proxy_buffering off;

 proxy_request_buffering off;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Forwarded-For $remote_addr;

 }

}

3. Other Load Balancers (SLB)

1.
2.

Installation

HAProxy (High Availability Proxy) — is an open-source software tool used for load
balancing and traffic proxying at the network protocol level, typically employed to
distribute traffic across multiple servers. It is one of the most popular solutions for
enhancing the availability and performance of web applications and services.

To install HAProxy on Ubuntu:

After installation, you need to edit the configuration file, which is the main aspect of setting
up HAProxy. The configuration file is typically located at /etc/haproxy/haproxy.cfg.

Example Configuration File from the Vendor's Documentation:

HAProxy configuration for
JumpServer HA-cluster

sudo apt install haproxy -y

global

 log 127.0.0.1 local2

 chroot /var/lib/haproxy

 pidfile /var/run/haproxy.pid

 maxconn 4000

 user haproxy

 group haproxy

 daemon

 stats socket /var/lib/haproxy/stats

defaults

 log global

 option dontlognull

 option redispatch

 retries 3

 timeout http-request 10s

 timeout queue 1m

 timeout connect 10s

 timeout client 1m

 timeout server 1m

 timeout http-keep-alive 10s

 timeout check 10s

 maxconn 3000

listen stats

 bind *:8080

After modifying the configuration file, restart and enable HAProxy:

 mode http

 stats enable

 stats uri /haproxy

 stats refresh 5s

 stats realm haproxy-status

 stats auth admin:password

listen jms-web

 bind *:80

 mode http

 option httpchk GET /api/health/

 stick-table type ip size 200k expire 30m

 stick on src

 balance leastconn

 server 192.168.100.21 192.168.100.21:80 weight 1 cookie web01 check inter 2s rise 2 fall 3

 server 192.168.100.22 192.168.100.22:80 weight 1 cookie web02 check inter 2s rise 2 fall 3

systemctl enable haproxy

systemctl start haproxy

Installation

JumpServer (including Community Edition) fully supports HA clustering without any
restrictions. In this article, I will show how it works.

An HA (High Availability) cluster for JumpServer is necessary to ensure high system
availability and minimize downtime. It enables:

Avoiding downtime: If one cluster node fails, another continues to handle user
requests.
Ensuring fault tolerance: Clustering allows the system to automatically switch
to available nodes in case of errors.
Improving performance: Load is distributed across multiple nodes, enhancing
system responsiveness under high user demand.
Increasing data storage reliability: Using shared resources like MySQL and
Redis with clustering support minimizes the risk of data loss.
Scalability: The cluster can be easily expanded by adding more nodes to handle
more users and tasks.

This architecture is particularly important for organizations where JumpServer is used as a
critical access and control system.

Nodes/JumpServer Nodes - Core cluster nodes with JumpServer installed. Each server
does not store "useful" data, making it possible to clone, copy, delete, or add nodes as
needed.

Database MySQL/PostgreSQL - The main DBMS for storing all JumpServer data,
including system settings, device parameters, user accounts, and passwords for target
systems. By default, it also stores session text logs such as SSH commands, SQL queries,
and keyboard input in RDP sessions.
By default, JumpServer creates and uses PostgreSQL within a container on the same server
where JumpServer is installed.

Redis Database - An auxiliary database for caching. It can be a shared database for the
entire cluster or separate databases for each cluster node.
By default, JumpServer creates and uses Redis within a container on the same server
where JumpServer is installed.

Video Recordings Storage - By default, it stores session recordings in the folder $folde
r/core/data/media, where $folder is specified in the main configuration file (default: VO
LUME_DIR=/data/jumpserver). The product's web interface allows setting up external
video storage: SFTP, S3, Ceph, MinIo, and others.

JumpServer HA-cluster
configuration

Why is an HA cluster needed for JumpServer

1.

2.

3.

4.

5.

Components of the JumpServer Cluster

Command Logs Storage - Logs are stored in the main database by default. The web
interface allows configuring log storage in Elasticsearch.

Load Balancer - Usually based on HAProxy, but other options can be used.

Typically, a JumpServer cluster consists of two or more cluster nodes that:

Are connected to a shared MySQL/PostgreSQL database (or cluster).
Are connected to a shared Redis database (or each has its own).
Share a common storage for video recordings:
- A common folder $folder/core/data/ (usually implemented via an NFS server).
OR
- External storage for session recordings (e.g., SFTP, S3, Ceph, MinIo).
Share a common storage for command logs:
- Based on a shared database (default).
OR
- Based on Elasticsearch.
Use a load balancer (optional).

Example of creating a JumpServer cluster
- With a shared MySQL database
- With a shared Redis database
- With a shared folder for storing video recordings $folder/core/data/ using an NFS server.

For this, we need:

Server with NFS, MySQL, Redis:
4 CPUs, 8 GB of RAM.

JumpServer Node1:
4 CPUs, 8 GB of RAM, 100 GB of free disk space.

JumpServer Node2:
4 CPUs, 8 GB of RAM, 100 GB of free disk space.

HAProxy Server (or another load balancer).

Server: Ubuntu 22.04, IP: 10.10.50.10

Commands may vary for different Linux versions, but generally, you need to create a
shared folder:

Cluster Architecture

•
•
•

•

•

Example of creating a JumpServer HA Cluster with two
nodes

1.
•

2.
•

3.
•

4.

1. Preparing the server with NFS, MySQL, and Redis

•

Installing and configuring NFS

sudo apt install nfs-kernel-server

sudo mkdir -p /data

Add the following line to the /etc/exports file:

Apply the settings and restart the NFS service:

Instructions depend on the OS version. To create a database and user, run the following
commands:

Don’t forget to configure the firewall to open the MySQL port (3306).

Instructions depend on the OS version. After installing Redis, run the following commands:

This will allow access to Redis with the password KXOeyNgDeTdpeu9q . Make sure to use a
unique password for your server. Open the port 6379 in the firewall.

Install the NFS client, mount the folder, and configure automatic mounting at startup:

sudo chown -R nobody:nogroup /data/

sudo chmod 777 /data/

sudo nano /etc/exports

/data 10.10.50.10/24(rw,sync,no_subtree_check)

sudo exportfs -a

sudo systemctl restart nfs-kernel-server

Installing and configuring MySQL

mysql -uroot

mysql> create database jumpserver default charset 'utf8';

mysql> set global validate_password_policy=LOW;

mysql> create user 'jumpserver'@'%' identified by 'KXOeyNgDeTdpeu9q';

mysql> grant all on jumpserver.* to 'jumpserver'@'%';

mysql> flush privileges;

mysql> exit;

Installing and configuring Redis

sed -i "s/bind 127.0.0.1/bind 0.0.0.0/g" /etc/redis.conf

sed -i "561i maxmemory-policy allkeys-lru" /etc/redis.conf

sed -i "481i requirepass KXOeyNgDeTdpeu9q" /etc/redis.conf

2. Installing JumpServer

Installing the first JumpServer node

Mounting the NFS Directory

sudo apt install nfs-common

mkdir -p /opt/jumpserver/core/data

Edit the config-example.txt file in the installer directory:

Run the installation:

After the installation is complete, you will receive the following values:

Install the NFS client and mount the folder just as on the first node.

When editing the JumpServer configuration file, fill in the values for SECRET_KEY and B
OOTSTRAP_TOKEN obtained after installing the first node:

mount -t nfs 10.10.50.10:/data /opt/jumpserver/core/data

echo "10.10.50.10:/data /opt/jumpserver/core/data nfs defaults 0 0" >> /etc/fstab

Configuring JumpServer

Modify the following parameters, leave others as default.

IMPORTANT: SECRET_KEY must match on all JumpServer nodes, or the data will not decrypt.

VOLUME_DIR=/opt/jumpserver

SECRET_KEY=

BOOTSTRAP_TOKEN=

LOG_LEVEL=ERROR

SESSION_EXPIRE_AT_BROWSER_CLOSE=True

MySQL

DB_HOST=10.10.50.10

DB_PORT=3306

DB_USER=jumpserver

DB_PASSWORD=KXOeyNgDeTdpeu9q

DB_NAME=jumpserver

Redis

REDIS_HOST=10.10.50.10

REDIS_PORT=6379

REDIS_PASSWORD=KXOeyNgDeTdpeu9q

KoKo Lion

SHARE_ROOM_TYPE=redis

REUSE_CONNECTION=False

./jmsctl.sh install

SECRET_KEY=kWQdmdCQKjaWlHYpPhkNQDkfaRulM6YnHctsHLlSPs8287o2kW

BOOTSTRAP_TOKEN=KXOeyNgDeTdpeu9q

Installing the Second JumpServer Node

And run the installation:

After completing the setup, you will have two JumpServer nodes sharing one MySQL/Redis
server and NFS storage. You can use any of the nodes to access target devices or
configure HAProxy to automatically redirect users to an active node.

VOLUME_DIR=/opt/jumpserver

SECRET_KEY=kWQdmdCQKjaWlHYpPhkNQDkfaRulM6YnHctsHLlSPs8287o2kW

BOOTSTRAP_TOKEN=KXOeyNgDeTdpeu9q

LOG_LEVEL=ERROR

SESSION_EXPIRE_AT_BROWSER_CLOSE=True

MySQL

DB_HOST=10.10.50.10

DB_PORT=3306

DB_USER=jumpserver

DB_PASSWORD=KXOeyNgDeTdpeu9q

DB_NAME=jumpserver

Redis

REDIS_HOST=10.10.50.10

REDIS_PORT=6379

REDIS_PASSWORD=KXOeyNgDeTdpeu9q

KoKo Lion

SHARE_ROOM_TYPE=redis

REUSE_CONNECTION=False

./jmsctl.sh install

Result

Getting Started Guide

Getting Started Guide

Prepare two devices (for SSH and RDP) and one database to test the product features.

For example:

If you need to gather information about the Windows device, change local account
passwords, create new accounts, or perform other tasks, you must configure SSH for

Windows.
For RDP connections, this is not required.

Go to the Console - Assets - Assets section and open the Asset Tree tab. Right-click in
this section to open the asset tree editing menu.

Getting Started Guide for
JumpServer PoC
Adding Devices

1. Preparation

IP/Host Name Port Type Account

afidc.afi.local 3389 Windows testadmin

10.10.53.210 22 Linux sergg

10.10.53.3 3306 MySQL user

2. Editing the Asset Tree

https://kb.afi-d.ru/books/dokumentaciia-jumpserver/page/ustanovka-openssh-na-windows-dlya-upravleniya-uz-windows
https://kb.afi-d.ru/books/dokumentaciia-jumpserver/page/ustanovka-openssh-na-windows-dlya-upravleniya-uz-windows
https://kb.afi-d.ru/books/dokumentaciia-jumpserver/page/ustanovka-openssh-na-windows-dlya-upravleniya-uz-windows
https://kb.afi-d.ru/books/dokumentaciia-jumpserver/page/ustanovka-openssh-na-windows-dlya-upravleniya-uz-windows

You can create folders (Nodes) and subfolders for your devices (use the Create node
option). Devices can be sorted into these folders.

A device can belong to multiple folders simultaneously.
These folders can be used to manage access policies, for example, granting
access to all devices in a specific folder.

Add a Linux-based device. Windows, MySQL, and other devices are added similarly.

Click the Create button, select the device type Linux (under Host), and fill in the fields:

Name: Any meaningful name
IP/Host: The IP address or DNS name of the device
Platform: Linux
Node: Folder(s) where the device will be placed

Adjust port numbers if non-standard ports are used.

•
•

3. Adding Assets to the System

•
•
•
•

https://kb.afi-d.ru/uploads/images/gallery/2024-05/MFCRGywIlsrq4ypG-be7199a3341e91590f301ada25482fd0.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/MFCRGywIlsrq4ypG-be7199a3341e91590f301ada25482fd0.png

Go to Console - Policies - Authorization and click the Create button. Fill in the required
access parameters:

Name: A meaningful name for the access group
Users: The PAM user(s) who will gain access to the devices
Groups: User group(s) that will gain access
Assets: The device(s) to which access is granted
Nodes: Folder(s) containing the devices to which access is granted
Account:

All accounts: Allow connections with any existing account for each device
Specified accounts: Specify particular accounts for connection

4. Configuring Device Access Permissions

•
•

https://kb.afi-d.ru/uploads/images/gallery/2024-05/DPOVprvmGN82cKUZ-8414350cdf0f42cf04a132c61197c49e.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/DPOVprvmGN82cKUZ-8414350cdf0f42cf04a132c61197c49e.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/hw72JExNsDqXur87-122ba10f29c18f91c16aead8a2857403.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/hw72JExNsDqXur87-122ba10f29c18f91c16aead8a2857403.png

Virtual accounts: enable additional auth options
Manual account: Allow manual login credentials without adding the account to
the system
Same account: Use the same account as the user's PAM login (LDAP
authorization only)
Anonymous account: Connect without credentials, typically for web interfaces
where users input their login credentials manually

Protocol: Limit the protocol used for connections
Actions: Enable or disable file transfers, clipboard sharing, or session sharing permissions
if supported by the connection type.

You can enable or disable the policy and set its start and end time:

Click Submit to save the settings.

Go to the Web Terminal by clicking the button in the top-right corner:

In the terminal, users see only the devices they are permitted to access. Click on the
desired device in the list to select the account and connection type:

•
•

•

•

5. Connecting to Devices

https://kb.afi-d.ru/uploads/images/gallery/2024-05/27Qb2hQjZ53Di1iH-c882450bcb3beef016c48221249932aa.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/27Qb2hQjZ53Di1iH-c882450bcb3beef016c48221249932aa.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/gQ8fuo5jteLdsO81-ed84d24915f1b97d9b0f533f02dde700.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/gQ8fuo5jteLdsO81-ed84d24915f1b97d9b0f533f02dde700.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/0Af2Yq81btmnw1l6-d6115252cb372d1e5f50f50ab94cc55c.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/0Af2Yq81btmnw1l6-d6115252cb372d1e5f50f50ab94cc55c.png

Without additional configuration, you can connect via the web interface using SSH, RDP,
and SFTP, as well as to MySQL via Web CLI or Web GUI. Other connection types, such as
Kubernetes, web interfaces, RemoteApp applications, and databases using dedicated
clients, will be covered in other articles.

https://kb.afi-d.ru/uploads/images/gallery/2024-05/0f36cPtqdiY0iamG-352c1318e71f968bdd38c323e89042aa.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/0f36cPtqdiY0iamG-352c1318e71f968bdd38c323e89042aa.png

Main configuration

Main configuration

1. Go to "System settings" - "Auth" and select the LDAP tab.

2. Enter the LDAP server address, an account for connection, and its password.

3. Specify the OU and user search filter. See an example of a filter for a specific group in
the screenshot below.

4. Click the "Submit" button to save the settings. Note: After changing parameters and
settings, always click "Submit" to apply changes. Otherwise, the test will run with old
parameters.

5. Click the "Test connection" button to verify the settings or "Test login" to check a
specific user's authorization.

Active Directory
synchronization with AD
groups
Configuring Integration with Active Directory

https://kb.afi-d.ru/uploads/images/gallery/2024-04/PbNRetdnGhyRstwA-05b9adc52e8fc7496a35c11e77025824.png
https://kb.afi-d.ru/uploads/images/gallery/2024-04/PbNRetdnGhyRstwA-05b9adc52e8fc7496a35c11e77025824.png

6. Click the "Bulk Import" button. You should see the users of the group that will be added
for PAM authorization. You can select specific users and click "Import" or import all users
by clicking "Import all".

7. You can also configure automatic user synchronization by clicking the "Sync setting"
button.

Why synchronize with AD groups?

Managing access rights to target systems can be done using familiar Active Directory
groups. Adding or removing a user from such groups will automatically synchronize with
the permissions matrix in JumpServer, and the user will gain or lose access rights.

Configuring synchronization with AD groups.

1. Go to System settings - Authentication - LDAP

2. In the User attribute field, add the parameter groups to look like this:

See screenshot:

Synchronization with Active Directory Groups

{

 "username": "sAMAccountName",

 "name": "cn",

 "email": "mail",

 "groups": "memberOf"

}

https://kb.afi-d.ru/uploads/images/gallery/2024-04/aY5TwgBb80KW0DZ0-603eb31b8e962b72a57b5a00b3592526.png
https://kb.afi-d.ru/uploads/images/gallery/2024-04/aY5TwgBb80KW0DZ0-603eb31b8e962b72a57b5a00b3592526.png

3. Click the Submit button to save the settings.

4. Click the User Import button and then click Sync Users in the opened window.

If everything is correct, you will see a list of users and a column with AD group attributes:

5. Click Import all to add users to the system.

https://kb.afi-d.ru/uploads/images/gallery/2024-10/E6wuEs1Yb3fworwW-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-10/E6wuEs1Yb3fworwW-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-10/X1FF2Lejb7ZdC8ze-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-10/X1FF2Lejb7ZdC8ze-izobrazenie.png

If you go to Console - User - Groups, you will see JS user groups with AD group names
and the same users in them:

https://kb.afi-d.ru/uploads/images/gallery/2024-10/Hbg2Ptw6aCD4hBOk-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-10/Hbg2Ptw6aCD4hBOk-izobrazenie.png

Main configuration

1. Go to the "Console - Policies - ACLs - Command filter" section and open the "Com
mand Group" tab.

2. Click the "Create" button, enter a name for the list, such as "Common high-risk
commands", and fill in the list with the required commands or regular expressions (see the
screenshot). Save it by clicking the "Submit" button.

3. Open the "Command filter" tab and click "Create" to create a filter.

4. The filter configuration includes the following parameters:

- Priority: the filter priority. The action of the filter with the highest priority will always be
executed.
- User: JumpServer users for whom the filter will apply.
- Asset: target systems where the filter will control connections.
- Account: accounts on target systems that will be controlled by the filter.
- Command Group: groups of commands that will be blocked.
- Action: the filter action: Reject - block the command, Accept - execute the command,
Review - send the command for approval by a specified employee, Warning - warn the
specified employee about executing the command.

Command filter
configuration for SSH and
database queries
Command ACL Configuration

https://kb.afi-d.ru/uploads/images/gallery/2024-05/gnf7FAdApcAZoDsQ-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/gnf7FAdApcAZoDsQ-izobrazenie.png

5. Click "Submit" to save the settings.

https://kb.afi-d.ru/uploads/images/gallery/2024-05/jYGdAKvHUEsKbRn1-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/jYGdAKvHUEsKbRn1-izobrazenie.png

Main configuration

In the Community Edition, two-factor authentication via TOTP (Google Authenticator) is
available.

To enable it, go to System setting - Security - Auth Security. The Global MFA auth
parameter allows you to disable two-factor authentication or enable it for all users or only
for administrators.

Note: For TOTP to work correctly, the JumpServer server must configure the NTP service
to obtain the correct time.

In JumpServer Enterprise, other two-factor authentication options are also available,
such as two-factor authentication via RADIUS.

How to enable 2FA(TOTP)
auth

https://kb.afi-d.ru/uploads/images/gallery/2024-05/l7SjI6umruD9BfLA-248d4f61d37343fad136475fa655b432.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/l7SjI6umruD9BfLA-248d4f61d37343fad136475fa655b432.png

Main configuration

OpenSSH on Windows is used for gathering system information, rotating passwords for
local Windows accounts, and automatically creating local accounts.
If you only need to connect via RDP without managing accounts, OpenSSH is not
required.

Simply run the installation distribution OpenSSH-Win64.msi with administrative rights. No
configuration is needed.

For more secure connections, you can configure authentication using a private key.

Setting Up Public Key-Based Authentication for Windows

Installing OpenSSH for
account management for
Windows
Why Install OpenSSH on Windows Devices?

Installing OpenSSH

Configuring Authentication with a Private Key

•

ssh-keygen.exe -t rsa

cp $env:USERPROFILE\.ssh\id_rsa.pub $env:USERPROFILE\.ssh\authorized_keys

notepad C:\ProgramData\ssh\sshd_config

This is the sshd server system-wide configuration file. See

sshd_config(5) for more information.

The strategy used for options in the default sshd_config shipped with

OpenSSH is to specify options with their default value where

possible, but leave them commented. Uncommented options override the

default value.

#Port 22

#AddressFamily any

#ListenAddress 0.0.0.0

#ListenAddress ::

https://github.com/PowerShell/Win32-OpenSSH/releases/latest
https://github.com/PowerShell/Win32-OpenSSH/wiki/Setup-public-key-based-authentication-for-windows

#HostKey __PROGRAMDATA__/ssh/ssh_host_rsa_key

#HostKey __PROGRAMDATA__/ssh/ssh_host_dsa_key

#HostKey __PROGRAMDATA__/ssh/ssh_host_ecdsa_key

#HostKey __PROGRAMDATA__/ssh/ssh_host_ed25519_key

Ciphers and keying

#RekeyLimit default none

Logging

#SyslogFacility AUTH

#LogLevel INFO

Authentication:

#LoginGraceTime 2m

#PermitRootLogin prohibit-password

StrictModes no

#MaxAuthTries 6

#MaxSessions 10

PubkeyAuthentication yes

The default is to check both .ssh/authorized_keys and .ssh/authorized_keys2

but this is overridden so installations will only check .ssh/authorized_keys

AuthorizedKeysFile .ssh/authorized_keys

#AuthorizedPrincipalsFile none

For this to work you will also need host keys in %programData%/ssh/ssh_known_hosts

#HostbasedAuthentication no

Change to yes if you don't trust ~/.ssh/known_hosts for

HostbasedAuthentication

#IgnoreUserKnownHosts no

Don't read the user's ~/.rhosts and ~/.shosts files

#IgnoreRhosts yes

To disable tunneled clear text passwords, change to no here!

#PasswordAuthentication yes

#PermitEmptyPasswords no

GSSAPI options

#GSSAPIAuthentication no

#AllowAgentForwarding yes

#AllowTcpForwarding yes

#GatewayPorts no

#PermitTTY yes

#PrintMotd yes

#PrintLastLog yes

#TCPKeepAlive yes

#UseLogin no

#PermitUserEnvironment no

#ClientAliveInterval 0

#ClientAliveCountMax 3

#UseDNS no

#PidFile /var/run/sshd.pid

#MaxStartups 10:30:100

#PermitTunnel no

#ChrootDirectory none

#VersionAddendum none

no default banner path

#Banner none

override default of no subsystems

Subsystem sftp sftp-server.exe

Example of overriding settings on a per-user basis

#Match User anoncvs

AllowTcpForwarding no

PermitTTY no

ForceCommand cvs server

Uncomment the following two lines:

#Match Group administrators

AuthorizedKeysFile __PROGRAMDATA__/ssh/administrators_authorized_keys

net stop sshd

net start sshd

Using a Private Key

ssh user@ip -i <private_key_absolute_path> (local users)

ssh user@domain@ip -i <private_key_absolute_path> (Domain users)

Main configuration

The configuration files for JumpServer are located at: /opt/jumpserver/config/config.txt

The following elements need to be added to the JumpServer configuration:

After modifying the JumpServer configuration file, you need to restart the service to apply
the changes.

Command:

Log into the JumpServer service to generate a login event log and check for output on the
Syslog server. Example login event log:

Syslog configuration
1. Modifying the JumpServer Configuration File

Syslog Configuration

SYSLOG_ENABLE=true

SYSLOG_ADDR=10.1.12.116:514 # Syslog server IP and port

SYSLOG_FACILITY=local2 # Corresponds to the Syslog configuration file

2. Restarting JumpServer

jmsctl restart

3. Verifying the Configuration

4. Analyzing Syslog Information
Event Type Syslog Record Example

Login Apr 19 15:25:11 10.1.14.125 jumpserver: login_log - {"backend": "Password",
"backend_display": "password", "city": "local", "datetime": "2023/04/19 15:18:36
+0800", "id": "cfc378e5-6337-4bf9-a8ac-15f33c2b0314", "ip": "10.1.10.35", "mfa":
{"label": "disabled", "value": 0}, "reason": "", "reason_display": "", "status":
{"label": "successful", "value": true}, "type": {"label": "Web", "value": "W"},
"user_agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, Gecko) Chrome/112.0.0.0 Safari/537.36 Edg/112.0.1722.48", "usernam
e": "admin"}

https://kb.afi-d.ru/uploads/images/gallery/2024-05/NvyHc2PXNNjTD1fX-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/NvyHc2PXNNjTD1fX-izobrazenie.png

File Upload Apr 19 15:27:26 10.1.14.125 jumpserver: ftp_log - {"account": "root(root)",
"asset": "10.1.12.182-root(10.1.12.182)", "date_start": "2023/04/19 15:20:51
+0800", "filename": "/tmp/vmware-root/file.pdf", "id":
"6e7721c0-2091-49fb-8853-fc18e0a2e432", "is_success": true, "operate":
{"label": "uploading", "value": "upload"}, "org_id":
"00000000-0000-0000-0000-000000000002", "remote_addr": "10.1.10.35", "user":
"Administrator(admin)"}

File Download Apr 19 15:28:08 10.1.14.125 jumpserver: ftp_log - {"account": "root(root)",
"asset": "10.1.12.182-root(10.1.12.182)", "date_start": "2023/04/19 15:21:33
+0800", "filename": "/tmp/vmware-root/file.pdf", "id": "113c0601-80c1-47d1-
a053-5038fd89698c", "is_success": true, "operate": {"label": "downloading", "val
ue": "download"}, "org_id": "00000000-0000-0000-0000-000000000002",
"remote_addr": "10.1.10.35", "user": "Administrator(admin)"}

Main configuration

Note: The Community Edition supports only the HTTP application publishing mode.

RemoteApp is the publication of applications on Microsoft RDS. To use it, you need a
Windows Server with configured RDS (RemoteApp). JumpServer can connect to
applications published on the RDS server and authorize in them. This is mainly relevant for
database management and web interface applications.

To support RemoteApp, you need to configure JumpServer and the RDS server.

MS Windows Server 2016 or MS Windows Server 2019
Installed RDS (Remote Desktop Services) role

Configured WinRM or installed OpenSSH

Go to "System settings - Applets", select the "Remote Hosts" tab, and click "Create".

Parameter Descriptions:

RemoteApp configuration
for application publishing

Requirements:

•
•

Adding a Publishing Server to JumpServer

https://kb.afi-d.ru/uploads/images/gallery/2024-05/yLSlUkkrSO0tZO4j-d1490d09d62214ca62d56f84840633b6-1.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/yLSlUkkrSO0tZO4j-d1490d09d62214ca62d56f84840633b6-1.png

Click "Submit" to save the settings.

Click on the name of the added publishing server. Server information will open; go to the "
Remote host deployment" tab and click the "Deploy" button on the right side of the
screen.

An installation window will appear, showing the installation process:

Parameter Description

name Device name

IP/Host IP address or network name of the RDS server

protocol group Protocols and port numbers. Specify WinRM or SSH if
OpenSSH will be used

Account List An administrator account for accessing the RDS
server

Automatically create an account Enable automatic account creation for connecting to
published applications

Number of accounts created Number of accounts to be created

Core service address The communication address between the agent of
the remote application publishing machine and
JumpServer backend. Replace http:127.0.0.1 with
your server's IP address

RDS license Configure the RDS license server

RDS License Server RDS license server parameters

RDS authorization mode Choose "Device" or "User" to configure the
authorization mode.

RDS single user single session Choose "Disable" or "Enable" to configure the single
session mode for one user.

RDS maximum disconnect time When the session reaches this maximum time, the
connection is terminated.

RDS remote application logout time limit Time to log out after the remote application session
is disconnected.

Setting Up the Application Publishing Mechanism

https://kb.afi-d.ru/uploads/images/gallery/2024-05/EKKLWYidu9Ful0Ja-9db6589d49688606a85eb33830a36fb7.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/EKKLWYidu9Ful0Ja-9db6589d49688606a85eb33830a36fb7.png

You do not need to manually install applications on the RDS server; JumpServer provides
ready-made applets that will automatically install and publish the required applications.
Existing applets are available on the online portal, where you can download them.

To publish an application, go to the "Remote Apps" tab. Here you can see the list of
added applets, their status, and the "Deploy" and "Uninstall" buttons for installing and
removing applets from the publishing server.

If the applet status is "Success", you can add devices and connect to them using the
corresponding applications. For connecting to web interfaces (HTTP), you can use the Ch
rome or Firefox applets.

Application Publishing

https://kb.afi-d.ru/uploads/images/gallery/2024-05/Ty3pa4lXLTZy33xp-d312aa33928970aae2eda9a2742d0c01.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/Ty3pa4lXLTZy33xp-d312aa33928970aae2eda9a2742d0c01.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/rSOaEU7PRApEtkFd-704880f3886cb52a44ae773c08198108.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/rSOaEU7PRApEtkFd-704880f3886cb52a44ae773c08198108.png

Main configuration

To connect to target systems via HTTP, you need to configure browser publishing via Pand

a (Linux-based application publishing server) or RDS (RemoteApp). RDS (RemoteApp)

configuration instructions.

Go to the "Console - Assets" section, click the "Create" button, and select the
target system type - Website.

In the "Selector" section, specify the parameters of the form fields that JumpSe
rver will fill automatically when starting a session.
For example:

With these settings, the username will be entered into the HTML element with na
me="email", the password will be entered into the HTML element with name="
password", and then the button with Xpath=/html/body/div/div/div[2]/form/
input will be clicked.

How to configure access
to asset web-interface,
HTTP session
configuration

Creating a "Website" Type Device

1.

2.

https://kb.afi-d.ru/books/jumpserver-documentation-en/page/setting-up-panda-for-application-publishingalternative-to-remoteapp
https://kb.afi-d.ru/books/jumpserver-documentation-en/page/setting-up-panda-for-application-publishingalternative-to-remoteapp
https://kb.afi-d.ru/books/jumpserver-documentation-en/page/setting-up-panda-for-application-publishingalternative-to-remoteapp
https://kb.afi-d.ru/books/jumpserver-documentation-en/page/setting-up-panda-for-application-publishingalternative-to-remoteapp
https://kb.afi-d.ru/books/jumpserver-documentation-en/page/remoteapp-configuration-for-application-publishing
https://kb.afi-d.ru/books/jumpserver-documentation-en/page/remoteapp-configuration-for-application-publishing
https://kb.afi-d.ru/uploads/images/gallery/2024-05/wvWQUhdyDfRqz3Ja-e3a09a3c646b1a2bb96ca241d41bac8f-1.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/wvWQUhdyDfRqz3Ja-e3a09a3c646b1a2bb96ca241d41bac8f-1.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/1UVFIElsfxORBn0k-bc0c4c73807704341a1e35cae8cdd3b9.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/1UVFIElsfxORBn0k-bc0c4c73807704341a1e35cae8cdd3b9.png

You can inspect the web form elements in the browser by right-clicking on the
input field and selecting "Inspect" (in Firefox) or "View Page Source" (in Chrome).
Additionally, you can use advanced settings and parameters of the login form
elements by switching to Script mode:

In the Account list section, add the username and password to be used for
authorization, similar to other connection types.
Save the settings by clicking the "Submit" button.

If everything is configured correctly, when selecting the desired device in the web terminal,
you will see a session start option:

3.

4.

Connecting to Web Interfaces via Web Terminal

https://kb.afi-d.ru/uploads/images/gallery/2024-05/tIjpSsRSgE8RZgI9-e649d5ff057446d082dfc15b647bcd56.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/tIjpSsRSgE8RZgI9-e649d5ff057446d082dfc15b647bcd56.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/wXRa14t6h3QndwLP-9ce264fb5c561e5cc3456f98a7a93a0b.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/wXRa14t6h3QndwLP-9ce264fb5c561e5cc3456f98a7a93a0b.png

Main configuration

JumpServer supports using both Windows Server and Linux as application publishing
machines, such as for publishing Chrome and Firefox browsers for HTTP sessions and
various database clients.

Microsoft RemoteApp: A method of publishing applications based on Windows Server,
providing maximum smoothness. Requires additional configuration of Windows Server and
the purchase of Microsoft RDS CALs.
Panda (Virtual Application): A Linux-based application publishing method,
characterized by medium smoothness, good compatibility, and support for operating
systems like CentOS, RedHat, Kylin, and openEuler.

Principle of Operation:
The Linux-based application publishing machine uses container technology to isolate the
application in an independent runtime environment. The Panda component provided by
JumpServer manages virtual applications.

The process looks as follows:

1. The user accesses the JumpServer Web Terminal and connects to the selected virtual
application.
2. The Panda component creates a GUI container based on VNC and forwards the VNC
connection information to the Lion component.
3. The Lion component connects to the container.

Using the server where JumpServer is deployed as a machine for publishing virtual
applications.

Setting up Panda for
application
publishing(alternative to
RemoteApp)

Types of Application Publishing:

Setting Up Panda for Application Publishing

Deployment Schemes

Scheme 1: All in One

1. Configuring the Main Configuration File

Open the main JumpServer configuration file.

Add the following parameters to it:

Restart the JumpServer service to apply the changes.

2. Enabling the Virtual Applications Feature

nano /opt/jumpserver/config/config.txt

Enable the Panda component

PANDA_ENABLED=1

Enable virtual applications in the core

VIRTUAL_APP_ENABLED=1

Panda host IP address (JumpServer IP)

PANDA_HOST_IP=192.168.127.162

URL for Lion to connect to Panda

PANDA_HOST=http://panda:9001

[root@localhost ~]# jmsctl restart

https://kb.afi-d.ru/uploads/images/gallery/2024-08/6O7sm24IzR9Spllq-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-08/6O7sm24IzR9Spllq-izobrazenie.png

In the JumpServer management console, go to System Settings → Features → VirtualA
pp and activate the virtual applications feature.

3. Loading Virtual Applications

Download virtual applications locally. Currently supported applications include:
Chrome, DBeaver. Distributions for these applications are available on the vendor portal.
Applications for Panda are located in the Virtual App section, while others are only for
RemoteApp (RDS).

In the JumpServer management console, navigate to System Settings → RemoteApps
and upload the virtual applications in the VirtualApp section.

After a short wait, the application will automatically be deployed on the application
publishing machine. In the JumpServer management console, under System Settings →
RemoteApps → Application Providers → VirtualApp, you can see the successful
deployment of the application.

https://kb.afi-d.ru/uploads/images/gallery/2024-08/qzhyiEyyOmXCZsBg-d373618ebdc2dc9f0f46e81a8c502a66.png
https://kb.afi-d.ru/uploads/images/gallery/2024-08/qzhyiEyyOmXCZsBg-d373618ebdc2dc9f0f46e81a8c502a66.png
https://apps.fit2cloud.com/jumpserver

4. Using Virtual Applications

Connect to assets using virtual applications.

Note: At this point, the JumpServer service will launch the virtual application container: 2
970298425/docker-chrome-app:v0.1.0 (Note: this container is approximately 1.3GB in
size and requires downloading over the Internet. In a local network, it can be manually
downloaded).

1. Configuring the Main Configuration File

Open the main JumpServer configuration file.

Add the following parameters to it:

Scheme 2: Panda on a Separate Server

nano /opt/jumpserver/config/config.txt

https://kb.afi-d.ru/uploads/images/gallery/2024-08/QUN1OGGpMOuG4Puk-e40cb92f130a313c6ef550283def1254.png
https://kb.afi-d.ru/uploads/images/gallery/2024-08/QUN1OGGpMOuG4Puk-e40cb92f130a313c6ef550283def1254.png
https://kb.afi-d.ru/uploads/images/gallery/2024-08/AHol6DkcqbrN2a5q-izobrazenie.png
https://kb.afi-d.ru/uploads/images/gallery/2024-08/AHol6DkcqbrN2a5q-izobrazenie.png

Restart the JumpServer service to apply the changes.

2. Installing Panda on a Separate Machine

Unpack the JumpServer installation package on the publishing machine, install Docker and
Docker Compose, and load the image.

Install Docker and Docker Compose:

Load the Panda image:

Create a docker-compose file for Panda:

Enable the Panda component

PANDA_ENABLED=0

Panda IP for the Lion component

PANDA_HOST=http://192.168.127.163:9001

[root@localhost ~]# jmsctl restart

[root@panda ~]# tar xzvf jumpserver-offline-release-v3.10.6-amd64.tar.gz -C /opt

[root@panda ~]# cd /opt/jumpserver-offline-release-v3.10.6-amd64/scripts

[root@panda scripts]# ./2_install_docker.sh

[root@panda scripts]# cd images

[root@panda images]# docker load -i panda:v3.10.6.tar

[root@panda ~]# mkdir -p /data/jumpserver/panda/data

[root@panda ~]# mkdir -p panda

[root@panda ~]# cd panda

[root@panda panda]# cat docker-compose.yaml

version: '2.4'

services:

 panda:

 image: registry.fit2cloud.com/jumpserver/panda:v3.10.6

 container_name: jms_panda

 hostname: jms_panda

 ulimits:

 core: 0

 restart: always

 ports:

 - 9001:9001

 tty: true

 environment:

 - BOOTSTRAP_TOKEN=YmEyNTRkNTYtNDIyMi02OTJm

 - CORE_HOST=http://192.168.127.162

 - NAME=panda

BOOTSTRAP_TOKEN is taken from the JumpServer configuration file: /opt/jumpserver/
config/config.txt

CORE_HOST - The address of your JumpServer

PANDA_HOST_IP - The IP address of Panda

Start the Panda container:

3. Enabling the Virtual Applications Feature

Repeat the steps from the All in One section.

4. Loading Virtual Applications

Repeat the steps from the All in One section.

5. Using Virtual Applications

Repeat the steps from the All in One section.

 - PANDA_HOST_IP=192.168.127.163

 volumes:

 - /data/jumpserver/panda/data:/opt/panda/data

 - /var/run/docker.sock:/var/run/docker.sock:z

 healthcheck:

 test: "curl -fsL http://localhost:9001/panda/health/ > /dev/null"

 interval: 10s

 timeout: 5s

 retries: 3

 start_period: 10s

docker-compose up -d

Troubleshooting

Troubleshooting

JumpServer is installed as a set of Docker containers performing various functions.

To check the state of the containers, log in to the server where JumpServer is installed and
enter the following command:

All containers in the list should have the status Healthy

List of Containers
jms_panda
jms_magnus
jms_celery
jms_chen
jms_koko
jms_lion
jms_razor
jms_video
jms_web
jms_redis
jms_kael
jms_xrdp
jms_mysql
jms_core

To view the error log of a specific module, use the following command:

How to check system
status and container logs

docker ps -a

https://kb.afi-d.ru/uploads/images/gallery/2024-05/S3Tl3DyDp7RSBNQ0-f6decb207af1db1f1c454d5a004b4d36.png
https://kb.afi-d.ru/uploads/images/gallery/2024-05/S3Tl3DyDp7RSBNQ0-f6decb207af1db1f1c454d5a004b4d36.png

For example:
Web interface error log:

Error log for Panda:

docker logs -f #CONTAINER_NAME --tail 200

docker logs -f jms_web --tail 200

docker logs -f jms_panda --tail 200

Troubleshooting

In this article, I will describe in detail how JumpServer, RDS Server, and Tinker interact so
that any issues can be identified.

JumpServer connects to the RDS server via SSH:

Installs the Tinker service on the RDS server and specifies the JS address (Core API
parameter).
Creates local service accounts of the type js_* and jms_* on the RDS server.
Adds the created accounts to the "Remote Desktop Users" group.

Tinker connects to JumpServer at the specified address (Core API
parameter):

Tinker reports that it is running, and the RDS status changes to "online".
Downloads distributions of selected applets, such as Chrome and DBeaver, from
the JS server using the same address specified in the Core API. Other applets may
be downloaded from the internet. If there is no internet access, you can manually
install the required applications.
Tinker installs the downloaded applets

Tinker is an auxiliary application for integration with JumpServer, assisting in maintaining
communication between RDS and JS, installing applications (applets) required for
publication, and managing the publication of RemoteApp applications during session
initiation.

By default, it is installed in the folder:
C:\Users\[ACCOUNT]\AppData\Local\Programs\Tinker\
([ACCOUNT] is the account used for the integration of JS and RDS.)

RemoteApp
Troubleshooting
Description of the Interaction Between
JumpServer, RDS Server, and Tinker

Description of the RDS and JumpServer Integration
Process

1.

•

•
•

Important: The "Remote Desktop Users" group name may differ in
Windows, depending on the OS language. If these accounts are not
present in the group, you will need to add them manually.

“

1.

•
•

•

Description of Tinker

•

It installs the JumpServer Tinker Service - this service must always be running.
Detailed logs of Tinker's operation and errors are available in the folder:
C:\Users\[ACCOUNT]\AppData\Local\Programs\Tinker\data\logs

Applets are a set of applications and automation scripts for managing applications. By
default, applets are installed in the folder:
C:\Program Files\JumpServer

This folder contains executable applications and Python scripts with launch parameters
that you can modify if necessary.

OpenSSH is installed on Windows RDS, and port 22 is open on the Windows
firewall.
The account used for integration with RDS has administrator rights on the RDS
server.
The IP/Host field contains the IP address of the RDS server or its DNS name,
which can be resolved by JumpServer.
The Core API field contains the URL of JumpServer, accessible from the RDS
Server.
Accounts of the type JS_XX and JMS_XX are created on the RDS server.
Accounts of the type JS_XX and JMS_XX are members of the Remote Desktop
Users group on the RDS server.
The JumpServer Tinker Service is running on the RDS server.
The RDS server status in the JumpServer interface: Normal.
The Status of applets in the properties of the RDS server in the JumpServer
interface: Success.

•
•

Tinker Applets

Final Checklist

•

•

•

•

•
•

•
•
•

Here are some screenshots for example:

https://kb.afi-d.ru/uploads/images/gallery/2025-04/Swhb9JtI1nPxhaJW-76d855ca9bc4889c6907b4266d9ba0de.png
https://kb.afi-d.ru/uploads/images/gallery/2025-04/Swhb9JtI1nPxhaJW-76d855ca9bc4889c6907b4266d9ba0de.png

https://kb.afi-d.ru/uploads/images/gallery/2025-04/ERww2ZQgI8DVgCjF-f9d80f59bedc8579805e537a20db9dab.png
https://kb.afi-d.ru/uploads/images/gallery/2025-04/ERww2ZQgI8DVgCjF-f9d80f59bedc8579805e537a20db9dab.png
https://kb.afi-d.ru/uploads/images/gallery/2025-04/cNeHp5aLHkp6Wu0F-85937cb6e01264524ca4436c5216695c.png
https://kb.afi-d.ru/uploads/images/gallery/2025-04/cNeHp5aLHkp6Wu0F-85937cb6e01264524ca4436c5216695c.png

https://kb.afi-d.ru/uploads/images/gallery/2025-04/ray1bDbltq0XCIsm-41d3422fa14d2ef891691a27b6f8a876.png
https://kb.afi-d.ru/uploads/images/gallery/2025-04/ray1bDbltq0XCIsm-41d3422fa14d2ef891691a27b6f8a876.png

Additional features

Additional features

An applet is a set of files that describe the process of installing and launching an
application on Microsoft RDS via RemoteApp. This is necessary for JumpServer to initiate
an access session to this application, automatically log in, and hide the authorization
parameters from the user.

Each applet must include the following files:

main.py - script for launching and logging into the application

icon.png - applet icon

manifest.yml - metadata, i.e., applet description

setup.yml - file describing the installation process

i18n.yml - file for translation into various languages

Example based on the MySQL Workbench applet

The file manifest.yml contains general information about the applet and specifies its type
and protocol.

Custome Applet structure
for RemoteApp
What is an applet?

Applet Structure

AppletName

 ├── i18n.yml

 ├── icon.png

 ├── main.py

 ├── manifest.yml

 └── setup.yml

File manifest.yml

(required)

name: mysql_workbench8

display_name: "{{ 'MySQL Workbench' | trans }}"

comment: "{{ 'A tool for working with MySQL, to execute SQL and design tables' | trans }}"

(required)

version: 0.1.1

(required)

The file setup.yml describes the parameters for installing the applet on the RDS server.

main.py - the main script of the applet

exec_type: python

(required)

author: Eric

general or web (required)

type: general

update_policy: always

edition: community

(required)

tags:

 - database

(required)

protocols:

 - mysqlworkbench

translations into other languages

i18n:

 MySQL Workbench:

 en: MySQL Workbench

 zh: MySQL Workbench

 ja: MySQL Workbench

 A tool for working with MySQL, to execute SQL and design tables:

 en: A tool for working with MySQL, to execute SQL and design tables

 zh: 7528 4E8E 4E0EMySQL 4E
00

8D
77

5D
E5

4F
5C

76
84

5D
E5

51
77

FF
0C

75
28

4E
8E

62
67

88
4CSQL54

8C
8B
BE

8B
A1

88
68

 ja: MySQL 30
67SQL30

92
5B
9F

88
4C

30
57

30
01

30
C6

30
FC

30
D6

30
EB

30
92

8A
2D

8A
08

30
59

30
8B

30
5F

30
81

30
6E

30
C4

30
FC

30
EB

File setup.yml

software installation type - msi, exe, zip, manual

type: msi

URL to download the software distribution or file name if the distribution is included with the applet

archive

source: mysql-workbench-community-8.0.31-winx64.msi

installation arguments

arguments:

 - /qn

 - /norestart

installation directory

destination: C:\Program Files\MySQL\MySQL Workbench 8.0 CE

path and name of the executable file

program: C:\Program Files\MySQL\MySQL Workbench 8.0 CE\MySQLWorkbench.exe

md5: d628190252133c06dad399657666974a

Script main.py

The application is launched by running the command:

That is, the main.py script is launched, and the launch parameters are passed to it. The ba
se64_json_data structure looks approximately as follows:

python main.py base64_json_data

{

 "app_name": "mysql_workbench8",

 "protocol": "mysql",

 "user": {

 "id": "2647CA35-5CAD-4DDF-8A88-6BD88F39BB30",

 "name": "Administrator",

 "username": "admin"

 },

 "asset": {

 "asset_id": "46EE5F50-F1C1-468C-97EE-560E3436754C",

 "asset_name": "test_mysql",

 "address": "192.168.1.1",

 "protocols": [

 {

 "id": 2,

 "name": "mysql",

 "port": 3306

 }

]

 },

 "account": {

 "account_id": "9D5585DE-5132-458C-AABE-89A83C112A83",

 "username": "root",

 "secret": "test"

 },

 "platform": {

 "charset": "UTF-8"

 }

}

Contents of main.py

import sys

from common import (block_input, unblock_input) # Import functions for blocking/unblocking input

from common import convert_base64_to_dict # Import function to convert Base64 string to a

dictionary (array)

from app import AppletApplication # Import main application

def main():

 base64_str = sys.argv[1] # Get the Base64 string from command-line arguments

 data = convert_base64_to_dict(base64_str) # Convert Base64 string to a dictionary

 # The data dictionary contains all the parameters for launching the application: account, server

App.py typically contains all the main code for launching the application with the required
parameters, making it the most important and complex part when developing a new
applet. It is easier to base it on one of the scripts of existing applets that are similar in
structure/type to the new applet being developed.

name, database name, etc., depending on the application type

 applet_app = AppletApplication(**data) # Pass dictionary data to the application launch function

 block_input() # Block user input

 applet_app.run() # Launch the application

 unblock_input() # Unblock user input

 applet_app.wait() # Wait for the application to complete

if __name__ == '__main__':

 try:

 main() # Launch the main function

 except Exception as e:

 print(e) # Output the error if it occurs

Contents of app.py

import sys # Imports the sys module for working with system functions

if sys.platform == 'win32': # Checks if the operating system is Windows

 from pywinauto import Application # Imports the library for automating Windows GUI applications

 from pywinauto.controls.uia_controls import (

 ButtonWrapper, EditWrapper, MenuItemWrapper,

 MenuWrapper, ComboBoxWrapper, ToolbarWrapper

)

 # Imports various controls for interacting with the application's GUI

from common import BaseApplication, wait_pid # Imports the base application class and a function

for waiting on processes

_default_path = r"C:\Program Files\MySQL\MySQL Workbench 8.0 CE\MySQLWorkbench.exe"

Defines the default path to the MySQL Workbench application

class AppletApplication(BaseApplication): # Defines the application class inheriting from

BaseApplication

 def __init__(self, *args, **kwargs): # Initializes the application

 super().__init__(*args, **kwargs) # Calls the parent class constructor

 self.path = _default_path # Sets the application's path

 self.username = self.account.username # Retrieves the username from the account information

 self.password = self.account.secret # Retrieves the password from the account information

 self.host = self.asset.address # Retrieves the host address from the asset information

 self.port = self.asset.get_protocol_port(self.protocol) # Retrieves the port based on the protocol

 self.db = self.asset.spec_info.db_name # Retrieves the database name

 self.pid = None # Placeholder for the application's process ID

 self.app = None # Placeholder for the application object

 def run(self): # Method to run the application

 app = Application(backend='uia') # Creates an application object using UI Automation

 app.start(self.path) # Starts the application using the specified path

 self.pid = app.process # Saves the application's process ID

 if not all([self.username, self.password, self.host]): # Checks if necessary parameters are

provided

 print('7F3A 5C11 5FC5 8981 7684 53C2 6570') # Outputs an error message in Chinese ("Missing required parameters")

 return

 # Accesses the main MySQL Workbench window and the "Database" menu

 menubar = app.window(title="MySQL Workbench", auto_id="MainForm",

control_type="Window") \

 .child_window(title="Database", control_type="MenuItem")

 menubar.wait('ready', timeout=10, retry_interval=5) # Waits for the menu to be ready

 MenuItemWrapper(menubar.element_info).select() # Opens the "Database" menu

 # Selects the "Connect to Database" menu item

 cdb = menubar.child_window(title="Connect to Database", control_type="MenuItem")

 cdb.wait('ready', timeout=10, retry_interval=5) # Waits for the item to be ready

 MenuItemWrapper(cdb.element_info).click_input() # Clicks on "Connect to Database"

 # Inputs the host

 host_ele = app.top_window().child_window(title="Host Name", auto_id="Host Name",

control_type="Edit")

 EditWrapper(host_ele.element_info).set_edit_text(self.host) # Sets the host value

 # Inputs the port

 port_ele = app.top_window().child_window(title="Port", auto_id="Port", control_type="Edit")

 EditWrapper(port_ele.element_info).set_edit_text(self.port) # Sets the port value

 # Inputs the username

 user_ele = app.top_window().child_window(title="User Name", auto_id="User Name",

control_type="Edit")

 EditWrapper(user_ele.element_info).set_edit_text(self.username) # Sets the username value

 # Inputs the database name

 db_ele = app.top_window().child_window(title="Default Schema", auto_id="Default Schema",

control_type="Edit")

 EditWrapper(db_ele.element_info).set_edit_text(self.db) # Sets the database name

 # Clicks the "OK" button to confirm the connection

 ok_ele = app.top_window().child_window(title="Connection", auto_id="Connection",

control_type="Window") \

 .child_window(title="OK", control_type="Button")

 ButtonWrapper(ok_ele.element_info).click() # Clicks "OK"

 # Inputs the password

 password_ele = app.top_window().child_window(title="Password", auto_id="Password",

control_type="Edit")

 password_ele.wait('ready', timeout=10, retry_interval=5) # Waits for the password field to be

ready

 EditWrapper(password_ele.element_info).set_edit_text(self.password) # Sets the password value

 # Clicks "OK" to complete the connection

 ok_ele = app.top_window().child_window(title="Button Bar", auto_id="Button Bar",

control_type="Pane") \

 .child_window(title="OK", control_type="Button")

 ButtonWrapper(ok_ele.element_info).click() # Clicks "OK"

 self.app = app # Saves the application object for further use

 def wait(self): # Method to wait for the application to complete

 wait_pid(self.pid) # Waits for the process with the specified ID to complete

	JumpServer documentation (en)
	Installation
	Installation JumpServer Enterprise Edition
	1.System Requirements:
	2. Installation
	3. Start application

	Installation JumpServer Community Edition
	1. Server preparation
	2. JumpServer Installation
	Quick Online JumpServer Installation:
	Standard Online Installation:
	3. Starting the Application

	Operation and Maintenance with command line jmsctl
	Operation and Maintenance - jmsctl

	JumpServer port discription
	List of Network Ports

	Installing SSL Certificates and Configuring HTTPS
	What is the Purpose of JumpServer Reverse Proxy?
	Installing SSL Certificates and Configuring HTTPS for the Web Interface
	Multi-Level Reverse Proxy on Nginx
	3. Other Load Balancers (SLB)

	HAProxy configuration for JumpServer HA-cluster
	JumpServer HA-cluster configuration
	Why is an HA cluster needed for JumpServer
	Components of the JumpServer Cluster
	Cluster Architecture
	Example of creating a JumpServer HA Cluster with two nodes
	1. Preparing the server with NFS, MySQL, and Redis
	Installing and configuring NFS
	Installing and configuring MySQL
	Installing and configuring Redis
	2. Installing JumpServer
	Installing the first JumpServer node
	Mounting the NFS Directory
	Configuring JumpServer
	Installing the Second JumpServer Node
	Result

	Getting Started Guide
	Getting Started Guide for JumpServer PoC
	Adding Devices
	1. Preparation
	2. Editing the Asset Tree
	3. Adding Assets to the System
	4. Configuring Device Access Permissions
	5. Connecting to Devices

	Main configuration
	Active Directory synchronization with AD groups
	Configuring Integration with Active Directory
	Synchronization with Active Directory Groups

	Command filter configuration for SSH and database queries
	Command ACL Configuration

	How to enable 2FA(TOTP) auth
	Installing OpenSSH for account management for Windows
	Why Install OpenSSH on Windows Devices?
	Installing OpenSSH
	Configuring Authentication with a Private Key
	Using a Private Key

	Syslog configuration
	1. Modifying the JumpServer Configuration File
	2. Restarting JumpServer
	3. Verifying the Configuration
	4. Analyzing Syslog Information

	RemoteApp configuration for application publishing
	Requirements:
	Adding a Publishing Server to JumpServer
	Setting Up the Application Publishing Mechanism
	Application Publishing

	How to configure access to asset web-interface, HTTP session configuration
	Creating a "Website" Type Device
	Connecting to Web Interfaces via Web Terminal

	Setting up Panda for application publishing(alternative to RemoteApp)
	Types of Application Publishing:
	Setting Up Panda for Application Publishing
	Deployment Schemes
	Scheme 1: All in One
	Scheme 2: Panda on a Separate Server

	Troubleshooting
	How to check system status and container logs
	RemoteApp Troubleshooting
	Description of the Interaction Between JumpServer, RDS Server, and Tinker
	Description of the RDS and JumpServer Integration Process
	Description of Tinker
	Tinker Applets
	Final Checklist
	Here are some screenshots for example:

	Additional features
	Custome Applet structure for RemoteApp
	What is an applet?
	Applet Structure
	File manifest.yml
	File setup.yml
	Script main.py
	Contents of main.py
	Contents of app.py

